

MODERN METHODS FOR OBTAINING LIGHTWEIGHT MATERIALS

Atakhonova Sayyora Koraboyevna

Associate Professor, Andijan State technical institute,

Email: ataxonova.sayyora@mail.ru

Abstract: Lightweight materials obtained through modern technologies are widely used in industry, aviation, automotive manufacturing, and construction. This article analyzes the properties and production methods of lightweight materials such as composite materials, nanomaterials, polymers, carbon fibers, and aluminum alloys. The advantages of these materials, including strength, elasticity, and corrosion resistance, are examined. Advanced manufacturing technologies such as 3D printing, chemical synthesis, and vacuum melting are also discussed. Their environmental aspects and energy efficiency are highlighted.

Keywords:

Lightweight materials, composite materials, nanomaterials, polymers, carbon fibers, aluminum alloys, strength, elasticity, corrosion resistance, modern technologies, 3D printing, chemical synthesis, vacuum melting, aerogels, carbon nanotubes, bio-based materials, automotive industry, aviation, construction, energy efficiency, ecology.

1. Introduction

Today, the advancement of science and technology has led to the creation of new, high-performance materials. These modern materials are widely used in various fields, including aviation, the automotive industry, electronics, medicine, and energy. Many of them are obtained using advanced manufacturing methods and nanotechnology. Nanomaterials are materials with a structural composition at the nanometer scale, possessing superior mechanical, electrical, and optical properties. They feature exceptional strength and lightness, high chemical stability,

excellent electrical and thermal conductivity, and notable antibacterial and biocompatibility characteristics.

2. Research Methods

Chemical Vapor Deposition (CVD): Used in the production of carbon nanotubes and graphene.

Sol-gel technology: Used for obtaining nano-ceramics and glass materials.

Electrospinning: Applied in the production of nano-textile materials.

Applications:

Electronics: Nanochips, sensors

Medicine: Nanorobots, precise drug delivery systems

Construction: Nano-concrete, nano-coatings

Aerospace Industry

Superconductors – Materials that conduct electric current without resistance, increasing energy efficiency and enabling new technologies. Their main advantages include lossless electrical conductivity, the ability to generate strong magnetic fields, and high energy efficiency.

Figure 1: Superconductor Structure

High-Pressure Synthesis: Used for producing high-temperature superconductors.

Chemical vapor deposition (CVD): Used for creating thin-film superconductors.

Application Fields:

Magnetic levitation trains (Maglev)

Electronics (superconducting quantum computers)

Medicine (MRI – Magnetic Resonance Imaging)

Graphene and carbon nanostructures

Graphene is a material consisting of a single atomic layer of carbon, making it one of the strongest and best electrical conductors known today. It is 200 times stronger than steel while being incredibly lightweight. Graphene exhibits outstanding electrical and thermal conductivity and high flexibility and elasticity.

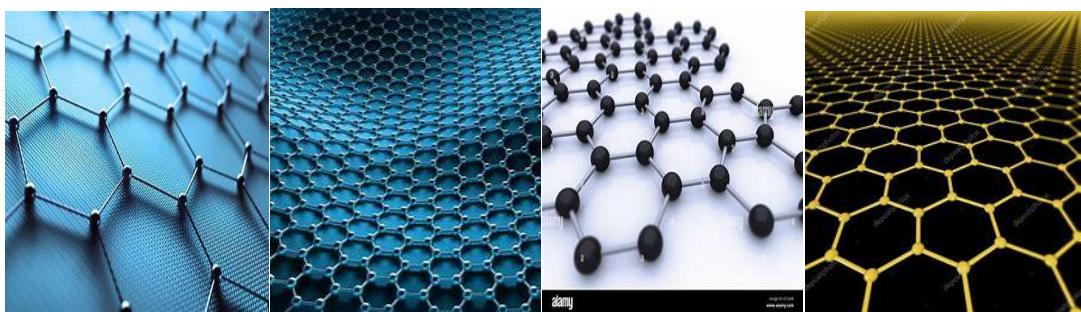


Figure 2: X-ray structures of graphene

3. Results and analysis

Chemical Vapor Deposition (CVD): Used for obtaining high-quality graphene films.

Laser Ablation: Used in graphene nanostructure production.

Applications:

Nanoelectronics (transparent displays, sensors)

Energy (high-performance batteries and supercapacitors)

Biomedical applications (biosensors, artificial skin)

Ceramic Matrix Composites (CMC)

These materials are highly resistant to high temperatures and wear. Their key properties include:

Heat resistance (up to 2000°C)

High mechanical strength

Corrosion resistance

Applications: Aerospace and space technology (rocket engine coatings)

Military applications (armor protection coatings)

Energy sector (gas turbines, heat exchange systems)

4. Conclusion

Modern materials are revolutionizing various fields of science and industry. Technologies such as nanomaterials, superconductors, aerogels, and biomaterials are playing a crucial role in shaping future industries. These materials stand out for their high efficiency, lightweight properties, durability, and environmental safety.

REFERENCES

1. Rustamjan o'g'li, A. B., & Adhamjon o'g'li, A. A. (2025). STUDY OF ITS CHEMICAL PROPERTIESIN OBTAINING IIIX15 MATERIAL FROM SECONDARY MATERIALS. *Science, education, innovation: modern tasks and prospects*, 2(2), 92-95.
2. Rustamjan o'g'li, B. A., & Isroiljon o'g'li, U. A. RESEARCH OF FRICTION RESISTANCE OF IRON-COMPOSITE MATERIALS.
3. Tursunali o'g'li, Y. F. (2025). KUKUN METALLURGIYASI TOMONIDAN ISHLAB CHIQARILGAN ALYUMINIY ASOSIDAGI METALL MATRITSALI KOMPOZITSIYALAR BO 'YICHA TADQIQOTLAR. INNOVATION IN THE MODERN EDUCATION SYSTEM, 5(48), 44-47.
4. Ibragimovich, K. R. (2025). CUTTING TOOL COATING WITH ELECTRICAL SPARK PLASMA ASSISTED TECHNOLOGY USING WC-CO ALLOYS AND THEIR COMPOSITIONS. *Science, education, innovation: modern tasks and prospects*, 2(2), 53-55.
5. Raxmatullayev, M. (2025). OBTAINING POLYMER PRODUCTS FROM SECONDARY POLYMER WASTE. EXPLORING NEW HORIZONS IN EDUCATION AND ACADEMIC RESEARCH, 1(1), 69-74.
6. Muxammadzokir o'g'li, R. M. (2025). IMPROVING SOME PROPERTIES BY ADDING METAL POWDERS TO THE POLYMER COMPOSITION. *Science, education, innovation: modern tasks and prospects*, 2(2), 63-66.
7. Adaxamjonovich, O. Z. A., & Sobirovich, A. A. (2024). Areas Of Use Of Composite Materials Made Of Metal Oxides And Carbides. *Ethiopian International Journal Of Multidisciplinary Research*, 11(04), 486-490.

8. Koraboyevna, A. S. (2025). TIRE MANUFACTURING TECHNOLOGY. Science, education, innovation: modern tasks and prospects, 2(2), 15-18.

9. Koraboyevna, A. S. (2025). RAW MATERIALS IN THE AUTOMOTIVE TIRE MANUFACTURING INDUSTRY. Science, education, innovation: modern tasks and prospects, 2(2), 12-14.

10. Koraboyevna, A. S. (2025). CRYSTAL LATTICE FORMS IN METALS. Science, education, innovation: modern tasks and prospects, 2(2), 5-7.