

WEATHER AND FUEL SPENDING CLARIFICATION

Khakimov Nodir Nurilloevich .

Andijan State technical institute,

Department of “ Materials Science ” assistant

khakimovnodir5@gmail.com, +998902031170

Abstract: This yes to account take it is necessary, if fuel the heat supplier If it is accepted as such, then $n > 1$, if liquid or solid fuel combustion is used for gasification, then $n < 1$ is required. Of the ovens work indicator various under the circumstances work in time It depends on the ratio of fuel in the tank and the total consumption. Fuel comparison and general expense below method with found. The theoretical amount of air required for the combustion of fuel components is weather expense It is said, this weather harvest doer oxygen - of oxygen It is called theoretical consumption.

Keywords: With the theoretical air flow rate, the combustion process of the combustible gas does not occur completely, therefore, the ratio of the residual air flow rate that does not reach the combustion zone to the theoretical flow rate is called the air flow rate coefficient and can be written as.

Introduction: With the theoretical air flow rate, the combustion process of the combustible gas does not occur completely, therefore, the ratio of the residual air flow rate that does not reach the combustion zone to the theoretical flow rate is called the air flow rate coefficient and can be written as.

For example, the equilibrium for the combustion of 1 m^3 CO gas can be written using the following equation Oxygen theoretical consumption: $Q2n = 1/2 \text{ m}^3 / \text{m}^3$, the weather theoretical expense

Theoretical weather at the expense of $n = 1$ to equal It will be. Various

kind in fuel weather consumption coefficient is different: hard in fuel 1.2 - 1.4; liquid in fuel 1.25 - 1.35; gassimon in fuel If $n > 1$, combustion of fuel products is ensured, and the remaining oxygen and all nitrogen are considered oxidants in this flame.

This yes to account take it is necessary, if fuel the heat supplier If it is accepted as such, then $n > 1$, if liquid or solid fuel combustion is used for gasification, then $n < 1$ is required. Of the ovens work indicator various under the circumstances work in time It depends on the ratio of fuel in the tank and the total consumption. Fuel comparison and general expense below method with found. 1. *Conditional fuel comparison spending calculation.* a) average heat impact and work period known when this on the ground m - heating necessary was of metal weight, t ; 29.3 - conditional heat of combustion of fuel, kJ/kg ; $Q_{o'r}$ - average heat impact, MW .When using mixed fuels to heat the furnace, and their consumption is known:

See you later. climbed departments and them calculation formulas Fully supports the calculation of comparative and total fuel consumption.

Fuel burning calculation

Fuel burning of calculation on the shore methods available:

- 1) practical method;
- 2) analog calculation method;
- 3) table method;
- 4) graphic method.

The air supplied to the furnace through the fan to calculate the combustion of fuel is V_h and begins by calculating the outlet ducts of the gases collected in the furnace and suffocating them , and from there determining the combustion temperature.

To verify the accuracy of the combustion calculation, a combustion material balance is drawn up Burning material balance:

For example, Table 1.1 provides data for natural gas combustion, and the calculation is $100 m^3$ When performed for gas, the air consumption is calculated as follows:

Fuel burning process acceleration methods

Acceleration of fuel combustion at the same time the amount of fuel consumed with is determined. Fuel combustion of acceleration very many There are several common types:

1. Fuel correspondence surface oxidation amount cultivation;
2. Fuel burning temperature increase;

REFERENCES

10. textbook for mechanical engineering universities and faculties. Moscow: Mashgiz , 1989. -588 p.
11. *Telegina A.S.* Thermal engineering calculations metallurgical furnaces. M.: Metallurgy , 1992. -380 p.
12. *Sokolov K.N.* Mechanization And automation V thermal ovens. M.: Sverdlovsk. M.: Mashgiz , 1986. -295 p.
13. *Jophee HMM. , Brewers F.I., Prokhorenko A.P., His A.M., His I.M.* Heating metal. M.:Metallurgy , 1981. -280 p.
14. *Logachev M.V.* Calculations of heating devices: a teaching aid for students of specialties 1-36 01 05 "Machines and technology of metal processing by pressure" - Minsk: BNTU, 2008. -75 p.