

**ANALYSIS OF HOUSEHOLD AND COMMERCIAL GLASS
PRODUCTION TECHNOLOGY AND DEVELOPMENT OF
RECOMMENDATIONS**

Atakhonova Sayyora Koraboyevna

Associate Professor, Andijan State technical institute

Email: ataxonova.sayyora@mail.ru.

Nurmuhammadjonova Zebiniso

Student, Andijan State technical institute Faculty of Mechanical Engineering,
MYaMT direction, Group K-06-22

Annotation: This article analyzes the production technology of household and commercial glass, including raw material preparation, melting, shaping, and cooling processes. Recommendations are given for improving energy efficiency, ensuring environmental safety, and implementing automation. The possibilities of modernizing production in Uzbekistan and efficiently utilizing local resources are considered.

Keywords: Household glass, commercial glass, production technology, raw materials, energy efficiency, environmental safety, automation, Uzbekistan.

1. Introduction

The production technology of household and commercial glass is one of the important areas of industry, encompassing the manufacturing processes of glass products widely used in everyday life and commercial activities. These products are in high demand across various sectors, including food storage containers, beverage bottles, decorative items, and industrial construction materials. The ecological purity, recyclability, and durability of glass distinguish it from other materials and contribute to its widespread use. In Uzbekistan, the development of the glass industry requires the effective use of local raw material resources, the

introduction of modern energy-efficient technologies, and ensuring environmental safety. At the same time, the implementation of digital technologies and automation processes reduces production costs and improves product quality. This article focuses on analyzing the production processes of household and commercial glass, identifying ways to enhance efficiency, optimize energy and resource utilization, and ensure environmental safety in manufacturing. The article examines all key stages of glass production, from raw material preparation to the final product and quality control. It also explores the use of innovative technologies, energy-saving methods, and waste reduction strategies in glass manufacturing. Additionally, it provides insights into modernizing the industry in Uzbekistan and applying international best practices in glass production[1].

2. Materials and methods

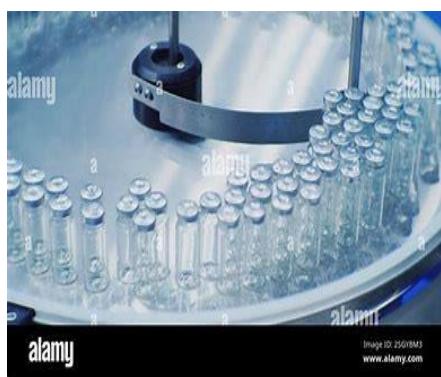
The primary raw materials used in glass production include silica sand, soda (sodium carbonate), and limestone (calcium carbonate). These materials form the basic composition of glass and determine its strength, clarity, and other properties. Additional substances, such as metal oxides (e.g., iron and copper oxides), are used to give color to glass, while antimony and arsenic compounds improve transparency and reduce air bubbles. Recycled glass fragments help conserve energy and reduce environmental waste [2].

Table 1. Household and Commercial Glass Production Technology

Technological Stage	Process Description	Main Equipment
Raw Material Preparation	Mixing sand, soda, limestone, and other components	Mixer, grinder

Melting	Heating raw materials to 1400-1600°C	Glass melting furnace
Shaping	Forming molten glass into different shapes (sheets, containers, etc.)	Molds, rollers, glass-blowing equipment
Cooling (Annealing)	Gradual cooling to reduce internal stresses	Annealing furnace
Cutting and Processing	Shaping and refining the final product	Cutting machine, polishing equipment
Quality Control and Testing	Checking compliance with quality standards	Optical scanners, chemical-physical laboratory equipment
Packaging and Storage	Packing and storing finished products	Packaging line, storage equipment

During the raw material preparation stage, materials are mixed in precise proportions and sent to the furnace. In the furnace, they are heated to approximately 1400-1600°C, where the raw materials react to form a uniform molten mass—glass. In the next stage, the molten glass is shaped into various forms using molds. For example, the blowing method is used for producing hollow products like beverage containers, while the pressing method is used for creating dense and durable items. After shaping, the cooling and tempering processes take place. The cooling process eliminates internal stresses, improving the durability of the final product. The tempering method involves heating the glass to a high temperature followed by rapid cooling, further enhancing its strength [2].


The final stage of production is quality control, where products are checked for size, transparency, shape, and strength. Modern sensors and cameras are used for

automated quality inspections, ensuring high product standards. Additionally, recycling technologies are introduced to enhance environmental safety and reduce waste. The implementation of energy-efficient technologies lowers production costs and improves efficiency.

These stages represent the key practices in glass manufacturing aimed at producing high-quality products and improving production efficiency[2-3].

3. Results and discussion

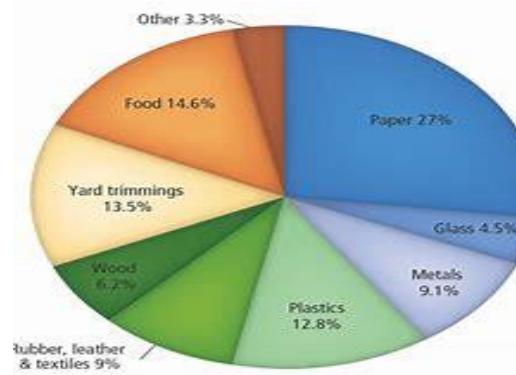

This study analyzed the raw materials and methods used in household and commercial glass production. The results indicate that silica sand, soda, and limestone contribute to high-quality and durable glass. Additionally, incorporating recycled glass helps conserve energy and minimize waste. The use of metal oxides and antimony compounds enhances the aesthetic properties and clarity of glass, making the final product more competitive in the market. During the melting and shaping stages, working at high temperatures and using molds to create different shapes improve the strength and quality of the glass. The advantages of blowing and pressing techniques were identified, confirming that the blowing method is effective for producing beverage containers, while the pressing method is more suitable for robust products [3].

Figure 1. Household and Commercial Glass Manufacturing Process

The cooling and tempering stages further increase the strength of glass products while reducing internal stresses, ensuring their long-term durability. Tempered glass is particularly strong and resistant to daily wear and tear[4].

Figure 2. Chemical Composition of Glass

Additionally, the introduction of automated quality control systems minimizes human errors and maintains consistent product quality. As a result, production efficiency increases, and products meet high-quality standards[5].

During the discussion, several recommendations for improving glass manufacturing in Uzbekistan were developed:

Utilization of Local Raw Materials: This reduces energy consumption and optimizes costs.

Increasing the Use of Recycled Glass: This not only minimizes waste but also enhances environmental sustainability.

Implementation of Energy-Saving Furnaces and Technologies: This decreases production costs and improves energy efficiency [6].

Automation and Digital Technologies: These improve production speed and product quality. Furthermore, proposals were made to adopt global best practices and strengthen environmental safety measures. These approaches will contribute to the advancement of household and commercial glass production in Uzbekistan[7].

4. Conclusion

In conclusion, this study analyzed household and commercial glass production technologies. The importance of silica sand, soda, and limestone as primary raw materials was highlighted, along with the economic and environmental benefits of using recycled glass. The blowing and pressing methods were identified as key techniques for enhancing glass quality, while cooling and tempering processes improved durability. Automated quality control systems were recognized as crucial for efficient production. To develop the glass industry in Uzbekistan, it is recommended to expand the use of local raw materials, increase the proportion of recycled glass, and implement energy-efficient technologies. These approaches will improve production efficiency and enable the creation of competitive products in the international market.

References

1. Rustamjan o'g'li, A. B., & Adhamjon o'g'li, A. A. (2025). STUDY OF ITS CHEMICAL PROPERTIESIN OBTAINING IIIX15 MATERIAL FROM

SECONDARY MATERIALS. Science, education, innovation: modern tasks and prospects, 2(2), 92-95.

2. Rustamjan o‘g‘li, B. A., & Isroiljon o‘g‘li, U. A. RESEARCH OF FRICTION RESISTANCE OF IRON-COMPOSITE MATERIALS.
3. Ibragimovich, K. R. (2025). CUTTING TOOL COATING WITH ELECTRICAL SPARK PLASMA ASSISTED TECHNOLOGY USING WC-CO ALLOYS AND THEIR COMPOSITIONS. Science, education, innovation: modern tasks and prospects, 2(2), 53-55.
4. Raxmatullayev, M. (2025). OBTAINING POLYMER PRODUCTS FROM SECONDARY POLYMER WASTE. EXPLORING NEW HORIZONS IN EDUCATION AND ACADEMIC RESEARCH, 1(1), 69-74.
5. Muxammadzokir o‘g‘li, R. M. (2025). IMPROVING SOME PROPERTIES BY ADDING METAL POWDERS TO THE POLYMER COMPOSITION. Science, education, innovation: modern tasks and prospects, 2(2), 63-66.
6. Rustamjan o‘g‘li, B. A., & Isroiljon o‘g‘li, U. A. RESEARCH OF FRICTION RESISTANCE OF IRON-COMPOSITE MATERIALS.